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Abstract—Proving linear inequalities and identities of Shan-
non’s information measures, possibly with linear constraints on
the information measures, is an important problem in information
theory. For this purpose, ITIP and other variant algorithms have
been developed and implemented, which are all based on solving
a linear program (LP). In particular, an identity f = 0 is verified
by solving two LPs, one for f ≥ 0 and one for f ≤ 0. In this
paper, we develop a set of algorithms that can be implemented
by symbolic computation. Based on these algorithms, procedures
for verifying linear information inequalities and identities are
devised. Compared with LP-based algorithms, our procedures
can produce analytical proofs that are both human-verifiable and
free of numerical errors. Our procedures are also more efficient
computationally. For constrained inequalities, by taking advantage
of the algebraic structure of the problem, the size of the LP that
needs to be solved can be significantly reduced. For identities,
instead of solving two LPs, the identity can be verified directly
with very little computation.

Index Terms—Entropy, mutual information, information in-
equality, information identity, machine proving, ITIP.

I. INTRODUCTION

Shannon’s information measures refer to entropy, mutual
information and their conditional versions. We need to prove
various information inequalities and identities involving these
information measures, for example, in converse coding theo-
rems. However, proving an information inequality or identity
with more than three random variables can be highly non-
trivial.

To tackle this problem, a framework for linear information
inequalities was introduced in [1]. Based on this framework, the
problem of verifying Shannon-type inequalities can be formu-
lated as a linear program (LP), and a software package based
on MATLAB called ITIP was developed [3]. Subsequently,
variants of ITIP that expand its functions in different directions
have been developed [4] [7] [5] [6] [8].

Using the LP-based approach, to prove an information iden-
tity f = 0, two LPs need to be solved, one for f ≥ 0 and the
other for f ≤ 0.

Instead of transforming the problem of proving information
inequalities into a general LP to be solved numerically, we
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develop procedures that can be implemented by symbolic
computation. The reader is referred to [9, Chs. 13-15] for the
background of this work, and to [15] for the the proofs omitted
here.

II. INFORMATION INEQUALITY PRELIMINARIES

The nonnegativity of all Shannon’s information measures
forms a set of inequalities called the basic inequalities. The
set of basic inequalities, however, is not minimal in the sense
that some basic inequalities are implied by the others. For
example, H(X|Y ) ≥ 0 and I(X;Y ) ≥ 0 together imply
H(X) = H(X|Y ) + I(X;Y ) ≥ 0.

Throughout this paper, all random variables are discrete.
Unless otherwise specified, all information expressions involve
some or all of the random variables X1, X2, . . . , Xn. Denote
the set {1, 2, . . . , n} by Nn.

Theorem II.1. [1] Any Shannon’s information measure can
be expressed as a conic combination of the following two
elemental forms of Shannon’s information measures:

i) H(Xi|XNn−{i})

ii) I(Xi;Xj |XK), where i ̸= j and K ⊆ Nn − {i, j}.

The nonnegativity of these two elemental forms, called
the elemental inequalities, form a proper subset of the basic
inequalities. In [1], the minimality of the elemental inequalities
is also proved. The total number of elemental inequalities is
equal to m ≜ n+

(
n
2

)
2n−1.

The elemental inequalities are called unconstrained infor-
mation inequalities because they hold for all joint distributions
of the random variables. On the other hand, information in-
equalities (identities) that hold under linear equality constraints
on Shannon’s information measures are called constrained
information inequalities (identities).

Information inequalities that are implied by the basic in-
equalities are called Shannon-type inequalities. Most of the
information inequalities that are known belong to this type.
However, non-Shannon-type inequalities do exist, e.g., [10].

All Shannon’s information measures can be expressed as a
linear combination of joint entropies. For the random variables
X1, X2, . . . , Xn, there are a total of 2n − 1 joint entropies.
By regarding the joint entropies as variables, the basic (el-
emental) inequalities become linear inequality constraints in
R2n−1. Likewise, the linear equality constrains on Shannon’s
information measures imposed by the problem under discussion
become linear equality constraints in R2n−1. This way, the
problem of proving a (linear) Shannon-type inequality can be
formulated as a linear program (LP), which is described next.
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Let h be the column (2n − 1)-vector of the joint entropies
of X1, X2, . . . , Xn. The set of elemental inequalities can be
written as Gh ≥ 0, where G is an m × (2n − 1) matrix.
Likewise, the constraints on the joint entropies can be written
as Qh = 0. When there is no constraint on the joint entropies,
Q is assumed to have zero row. The following theorem, on
which ITIP and its variants are based, enables a Shannon-type
inequality to be verified by solving an LP.

Theorem II.2. [1] b⊤h ≥ 0 is a Shannon-type inequality
under the constraint Qh = 0 if and only if the minimum of the
problem

Minimize b⊤h, subject to Gh ≥ 0 and Qh = 0

is zero.

III. LINEAR INEQUALITIES AND RELATED ALGORITHMS

Let x = [x1, x2, . . . , xn], and let Rh[x] be the set of all
homogeneous linear polynomials in x with real coefficients.
In this paper, unless otherwise specified, we assume that all
inequality sets have the form Sf = {fi ≥ 0, i ∈ Nm}, with
fi ̸= 0 and fi ∈ Rh[x], and all the equality sets have the form
Ef̃ = {f̃i = 0, i ∈ Nm̃} with f̃i ̸= 0 and f̃i ∈ Rh[x].

For a polynomial set Pf = {fi, i ∈ Nm} and the cor-
responding inequality set Sf = {fi ≥ 0, i ∈ Nm}, and a
polynomial set Pf̃ = {f̃i, i ∈ Nm̃} and the corresponding
equality set Ef̃ = {f̃i = 0, i ∈ Nm̃}, we write Sf = R(Pf ),
Pf = R−1(Sf ), Ef̃ = R̃(Pf̃ ) and Pf̃ = R̃−1(Ef̃ ). Also, we
write (fi ≥ 0) ∈ Sf to mean that the inequality fi ≥ 0 is in
Sf .

Let N>0 = {1, 2, . . .}, and R>0 and R≥0 be the sets of
positive and nonnegative real numbers, respectively.

Definition III.1. A linear polynomial F in x is called a conic
combination of polynomials fj in x, j = 1, . . . , k, if F =∑k

j=1 rjfj with rj ∈ R≥0.

Definition III.2. The inequalities f1 ≥ 0, f2 ≥ 0, . . . , fk ≥
0 imply the inequality f ≥ 0 if: x satisfies f1 ≥ 0, f2 ≥
0, . . . , fk ≥ 0 implies x satisfies f ≥ 0.

Definition III.3. Given a set of inequalities Sf = {fi ≥ 0, i ∈
Nm}, for some i ∈ Nm, fi ≥ 0 is called a redundant inequality
if fi ≥ 0 is implied by the inequalities fj ≥ 0, where j ∈ Nm

and j ̸= i.

Definition III.4. Two inequalities f ≥ 0 and g ≥ 0 are trivially
equivalent if f = c g for some c ∈ R>0. Given two sets of
inequalities Sf = {fi ≥ 0, i ∈ Nm1

} and Sg = {gi ≥ 0, i ∈
Nm2

}, we say that Sf and Sg are trivially equivalent if
1) Sf and Sg have exactly the same number of inequalities;
2) for every i ∈ Nm1

, fi ≥ 0 is trivially equivalent to gj ≥ 0
for some j ∈ Nm2

;
3) for every i ∈ Nm2

, gi ≥ 0 is trivially equivalent to fj ≥ 0
for some j ∈ Nm1 .

Lemma III.1. Given h1, . . . , hk, h ∈ Rh[y], h1 ≥ 0, ..., hk ≥
0 imply h ≥ 0 if and only if h is a conic combination of
h1, . . . , hk.

This lemma, which generalizes [1, Theorem 2], is a conse-
quence of Farkas’ lemma [12] [13].

Definition III.5. Let Sf = {fi(x) ≥ 0, i ∈ Nm} be an
inequality set. If fk(x) = 0 for all solution x of Sf , then
fk(x) = 0 is called an implied equality of Sf . The inequality
set Sf is called a pure inequality set if Sf has no implied
equalities.

Lemma III.2. Let Sf = {fi(x) ≥ 0, i ∈ Nm} be an inequality
set. Then fk is an implied equality of Sf if and only if

fk(x) ≡
m∑

i=1,i̸=k

pifi(x), (1)

where pi ≤ 0 for all i ∈ Nm\{k}.

Let Ef̄ be the set of all implied equalities of Sf . Evidently,
R̃−1(Ef̄ ) ⊆ R−1(Sf ).

Proposition III.1. A subset of a pure inequality set is a pure
inequality set.

In the rest of the section, we will develop a few algorithms
for simplifying a linear inequality set constrained by a linear
equality set. These algorithms will be used as building blocks
for the procedures to be developed in Section IV for proving
information inequalities and identities.

A. Dimension reduction of an inequality set

Let Sf = {fi ≥ 0, i ∈ Nm} be an inequality set and Ef̃ =

{f̃i = 0, i ∈ Nm̃} be an equality set.

Proposition III.2. Under the variable order x1 ≺ x2 ≺ · · · ≺
xn, the linear equation system Ef̃ can be reduced by Gauss-
Jordan elimination to the unique form

Ẽ = {xki − Ui = 0, i ∈ Nñ}, (2)

where k1 < k2 < · · · < kñ, xki
is the leading term of xki

−Ui,
ñ is rank of the linear system Ef̃ and Ui is a linear function
in {xj , for ki < j < ki+1, i ∈ Nñ}, with ki+1 = n + 1 by
convention. Furthermore,

∑
i∈Nñ

|Ui| = n− ñ.

We call the equality set Ẽ the Jordan normal form of
Ef̃ . Likewise, we call the polynomial set R̃−1(Ẽ) the Jordan
normal form of R̃−1(Ef̃ ). We say reducing Sf by Ef̃ to mean
using Algorithm 1 to find R(Rf ). We also say reducing Pf by
Ef̃ to mean using Algorithm 1 to find Rf , called the remainder
set (the remainder if Rf is a singleton).

Algorithm 1 Dimension Reduction
Input: Sf , Ef̃ .
Output: The remainder set Rf .
1: Compute Ẽ with Ef̃ by Proposition III.2.
2: Substitute xki

by Ui in Pf to obtain a set R.
3: Let Rf = R\{0}.
4: return R(Rf ).

Example III.1. Given a variable order x1 ≺ x2 ≺ x3, let
Sf = {f1 ≥ 0, f2 ≥ 0} and Ef̃ = {f̃1 = 0, f̃2 = 0, f̃3 = 0},
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where f1 = x1+x2−x3, f2 = x2+x3, f̃1 = x1+x2+x3, f̃2 =
x1 + x2, and f̃3 = x3. We write Pf = R−1(Sf ) = {f1, f2}
and Pf̃ = R̃−1(Ef̃ ) = {f̃1, f̃2, f̃3}.

Firstly, we obtain that the rank of Ef̃ is ñ = 2. Then the
Jordan normal form of Ef̃ is given by Ẽ = {xk1

− U1 =
0, xk2 − U2 = 0}, where k1 = 1, k2 = 3, U1 = −x2, U2 = 0.

Using the equality constraints in Ẽ, we substitute x1 = −x2

and x3 = 0 into Pf = {f1, f2} to obtain R = {0, x2}. Hence
Rf = R\{0} = {x2}. In other words, the inequality set Sf is
reduced to R(Rf ) = {x2 ≥ 0} by the equality set Ef̃ . Note
that in R(Rf ), only n− ñ = 1 variable, namely x2, appears.

B. The implied equalities contained in an inequality set

Let Sf = {fi ≥ 0, i ∈ Nm} be a given inequality set. The
following algorithm, called the Implied Equalities Algorithm,
finds all the implied equalities of Sf .

Algorithm 2 Implied Equalities Algorithm
Input: Sf .
Output: The implied equalities in Sf .
1: Let E0 :=

∑m
i=1 vifi, where V = {vi, i ∈ Nm} is a set of

variables.
2: Set E0 ≡

∑n
j=1 wjxj ≡ 0. Then W = {wj = 0, j ∈ Nn}

is a linear system in V .
3: Solve the linear equations {wj = 0, j ∈ Nn} by Gauss-

Jordon elimination to obtain the solution set of vi of the
form {vi = Vi, i ∈ Nm}, where d is the rank of the linear
system W and Vi is a linear function in m − d variables
of V .

4: For every k ∈ Nm, let Lk, k = 1, . . . ,m be the following
linear programming problem:

max(Vk)
s.t. Vi ≥ 0, i = 1, 2, . . . ,m.

(3)

5: The equality fk = 0 is an implied equality of Sf if and
only if the optimal value of Lk max(Vk) > 0.

6: return All implied equalities fk’s in Sf .

With Algorithm 2, we can obtain the set of implied equalities
of Sf , denoted by Ef̃ . The following example illustrates how
we can apply Algorithm 2 and then Algorithm 1 to reduce a
given inequality set. A justification of Algorithm 2 is given
after the example.

Example III.2. Fix the variable order x1 ≺ x2 ≺ x3. Let
Sf = {f1 ≥ 0, f2 ≥ 0, f3 ≥ 0, f4 ≥ 0, f5 ≥ 0}, where f1 =
x1, f2 = x2 − x1, f3 = −x1, f4 = −x2 and f5 = x2 + x3.
An application of Algorithm 2 to Sf yields the following:

• Firstly, we let E0 =
∑5

i=1 vifi =
∑3

j=1 wjxj . Then we
have V = {v1, v2, v3, v4, v5} and W = {w1 = 0, w2 =
0, w3 = 0} with w1 = v1 − v2 − v3, w2 = v2 − v4 + v5
and w3 = v5.

• The rank of W is d = 3. We then solve the linear equations
W by Gauss-Jordon elimination to obtain {vi = Vi, i ∈
N5}, where V1 = v3 + v4, V2 = v4, V3 = v3, V4 = v4
and V5 = 0, from which we can see that Vi is a linear
function of the two variables v3 and v4.

• Finally, we have the following 5 linear programming
problems:
L1 : max(v3 + v4) s.t. v3 + v4 ≥ 0, v3 ≥ 0, v4 ≥ 0.
L2 : max(v4) s.t. v3 + v4 ≥ 0, v3 ≥ 0, v4 ≥ 0.
L3 : max(v3) s.t. v3 + v4 ≥ 0, v3 ≥ 0, v4 ≥ 0.
L4 : max(v4) s.t. v3 + v4 ≥ 0, v3 ≥ 0, v4 ≥ 0.
L5 : max(0) s.t. v3 + v4 ≥ 0, v3 ≥ 0, v4 ≥ 0.

• Observe that L2 and L4 are same, and the optimal value of
L5 is 0. Then, we solve L1 to L3 to obtain that the optimal
values are all equal to +∞. Thus, we obtain the implied
equality set, denoted by Ef̃ = {f̃1 = 0, f̃2 = 0, f̃3 =

0, f̃4 = 0}, where f̃1 = x1, f̃2 = x2 − x1, f̃3 = −x1 and
f̃4 = −x2.

Upon applying Algorithm 2, the inequality set Sf is reduced
to the inequality set S′

f = {f5 ≥ 0} = {x2 + x3 ≥ 0}
constrainted by the equality set Ef̃ . Finally, apply Algorithm 1
with S′

f and Ef̃ as inputs to obtain Rf = {x3}. In other words,
the inequality set Sf is reduced to {x3 ≥ 0} constrained by
the equality set Ef̃ after the applications of Algorithm 2 and
then Algorithm 1.

Justification for Algorithm 2. In Algorithm 2, the optimal
value of Lk being positive means that we can find a set of
values of vi, i ∈ Nm satisfying vk > 0 and vj ≥ 0 for j ̸= k,
such that

∑m
i=1 vifi ≡ 0, which can be rewritten as

fk ≡
m∑

i=1,i̸=k

(
− vi
vk

)
fi.

Since by Lemma III.2, fk = 0 is an implied equality if and

only if fk ≡
m∑

i=1,i̸=k

pifi with pi ≤ 0 for i ∈ Nm, we see that

the equality fk = 0 is an implied equality of Sf if and only if
the optimal value of Lk is positive.

C. Minimal characterization set

Definition III.6. Let Sg = {gi ≥ 0, i ∈ Nm} be an inequality
set and Sg′ = {g′i ≥ 0, i ∈ Nm′} be a subset of Sg . If

1) Sg and Sg′ are equivalent, and
2) there is no redundant inequalities in Sg′ ,

we say that Sg′ is a minimal characterization set of Sg .

Proposition III.3. Let Sg = {gi ≥ 0, i ∈ Nm} be an inequality
set. If Sg′ = {g′i ≥ 0, i ∈ Nm′} is a minimal characterization
set of Sg , then m′ ≤ m and 0 /∈ R−1(Sg′).

The following corollary is immediate from Definition III.6
and Proposition III.1.

Corollary III.1. A minimal characterization set of a pure
inequality set is also a pure inequality set.

Theorem III.1. Let h1, . . . , hm ∈ Rh[x] and Sh = {hi ≥
0, i ∈ Nm} be a pure inequality set. Then the minimal
characterization set of Sh is unique.

Theorem III.2. Let Sf = {fi ≥ 0, i ∈ Nm1
} and Sg =

{gi, i ∈ Nm2
} be two pure inequality sets, and Sf ′ and Sg′ be

their minimal characterization sets respectively. If Sf and Sg

are equivalent, then Sf ′ and Sg′ are trivially equivalent.
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Algorithm 3 Minimal Characterization Set Algorithm

Input: Sh.
Output: A minimal characterization set of Sh.

Set Ph := R−1(Sh), M := Nm.
1: for k from 1 to m do
2: Let Hk := hk −

∑
i∈M\{k}

qi,khi, where Tk = {qi,k, i ∈

M\{k}} is a set of variables.

3: Set Hk ≡
n∑

i=1

Qi,kxi ≡ 0. Then T̃k = {Qi,k = 0, i ∈

Nn} is a linear system in Tk.
4: Solve the linear equations of T̃k.
5: if the linear equations of T̃k can be solved then
6: Obtain the solution set of qi,k of the form {qi,k =

Qi,k, i ∈ M\{k}}, where d1 is the rank of the
linear system T̃k and Qi,k is a linear function in
N [M\{k}]− d1 variables of Tk.

7: Let Lk be the following linear programming problem:

min(0)
s.t. Qi,k ≥ 0, i ∈ M\{k}.

8: if Lk can be solved then
9: Ph := Ph\{hk}, M := M\{k}.

10: end if
11: end if
12: end for
13: return R(Ph).

Let Sh = {hi ≥ 0, i ∈ Nm} be an inequality set, where
hi ∈ Rh[x]. Based on Lemma III.1, Algorithm 3, called
the Minimal Characterization Set Algorithm, finds a minimal
characterization set of Sh.
Justification for Algorithm 3. Steps 2 to 11 remove the
polynomial hk from Ph if it can be expressed as a conic
combination of hi, i ∈ M\{k}. Iterating over all k from 1 to
m, the output inequality set R(Ph) is equivalent to Sh and it
is a pure inequality set. Hence, it is a minimal characterization
set of Sh.

D. The reduced minimal characterization set

Let Sf = {fi ≥ 0, i ∈ Nm} be a linear inequality set, and
Ef̃ be the set of implied equalities of Sf obtained by applying
Algorithm 2. Then we obtain Ẽ, the Jordan normal form of Ef̃ ,
as in Proposition III.2. Let Rf be the remainder set obtained by
reducing R−1(Sf )\R−1(Ef̃ ) by R̃−1(Ẽ) using Algorithm 1.

Theorem III.3. The set R(Rf ) is a pure inequality set.

Since R(Rf ) is a pure inequality set, the minimal charac-
terization set of R(Rf ) is unique. We let Sr′ be the minimal
characterization set of R(Rf ).

Definition III.7. The set SM = Ẽ ∪ Sr′ is called the reduced
minimal characterization set of Sf .

Theorem III.4. The reduced minimal characterization set of
Sf is unique.

The following algorithm finds the reduced minimal charac-
terization set of a linear inequality set.

Algorithm 4 Reduced Minimal Characterization Set Algorithm
Input: Sf .
Output: The reduced minimal characterization set of Sf .
1: Apply Algorithm 2 to find the implied equality set of Sf ,

denoted by Ef̃ .
2: Apply Algorithm 1 to reduce R−1(Sf )\R̃−1(Ef̃ ) by Ef̃

to obtain Rf .
3: Apply Algorithm 3 to obtain the minimal characterization

set of R(Rf ), denoted by Sr′ .
4: return SM = Ẽ ∪ Sr′ .

By Proposition III.2 and Theorems III.2 and III.4, we imme-
diately obtain the following theorem.

Theorem III.5. For two equivalent inequality sets, their re-
duced minimal characterization sets are same.

Note that for a pure inequality set, the minimal characteri-
zation set is exactly the reduced minimal characterization set.

IV. PROCEDURES FOR PROVING INFORMATION
INEQUALITIES AND IDENTITIES

In [15], we introduce a set of variables called the s-variables
which are obtained through a linear transformation of the
joint entropies of X1, X2, . . . , Xn according to the theory
of I-Measure [11] [9, Ch. 3]. The s-variables facilitate the
implementation of the procedures to be discussed below.

A. Procedure I: Proving Information Inequalities

Input:
Objective information inequality: F̄ ≥ 0.
Additional constraints: C̄i = 0, i = 1, . . . , r1; C̄j ≥ 0, j =
r1 + 1, . . . , r2.
Element information inequalities: C̄k ≥ 0, k = r2 +1, . . . , r3.
// Here, F̄ , C̄i, C̄j , and C̄k are linear combination of
information measures.
Output: A proof of F̄ ≥ 0 if feasible.

Step 1. Construct the s-variable set Sn.
Step 2. Transform F̄ , C̄i, C̄j and C̄k to linear polynomials

F , Ci, Cj and Ck in Sn respectively.
// We need to solve
// Problem P1: Determine whether F ≥ 0 is implied by

Ci = 0, i = 1, . . . , r1,
Cj ≥ 0, j = r1 + 1, . . . , r2,
Ck ≥ 0, k = r2 + 1, . . . , r3.

Step 3. Apply Algorithm 1 to reduce {Cl, l ∈ Nr3\Nr1} by
{Cl = 0, l ∈ Nr1} to obtain the Jordan normal form of

{Cl, l ∈ Nr1}, denoted by B, and the remainder set,
denoted by C1 = {gi, i ∈ Nr}.

Step 4. Apply Algorithm 4 to obtain the reduced minimal
characterization set of R(C1), denoted by

SM = Ẽ ∪ Sr′ . Write Sr′ = {Cj ≥ 0, j ∈ Nt2}.
Step 5. Let G = R̃−1(Ẽ)∪B and compute the Jordan normal

form of G, denoted by B = {Ci, i ∈ Nt1}.
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// In the above, the inequality set R(C1) is generated by
reducing {Cl ≥ 0, l ∈ Nr3\Nr1} by {Cl = 0, l ∈ Nr1}, and
// the inequality set Sr′ is generated by further reducing R(C1)
by own implied equalities, which is equivalent to Ẽ.
// Therefore, in Sr′ , only the free variables in the Jordan normal
form B are involved.

Step 6. Reduce F by R̃(B) to obtain the remainder F1.
// In both F1 and Sr′ , only the free variables in the Jordan
normal form B are involved.
// The original Problem P1 is now transformed into
// Problem P2: Determine whether F1 ≥ 0 is implied by the
inequalities in Sr′ , i.e.,

Ci ≥ 0, j = 1, . . . , t2.

// Since the equality set R̃(B) contains only constraints on the
pivot variables in B, it is ignored in formulation of
// Problem P2. The remaining steps follow Algorithm 3.

Step 7. Let xj , j ∈ Nn1
be the variables in Problem P2. Let

F2 = F1 −
∑t2

i=1 piCi, where
P = {pi, i ∈ Nt2} is a set of variables. Set F2 ≡∑n1

j=1 qjxj ≡ 0. Then Q = {qj = 0, j ∈ Nn1}
is a linear system in P .

Step 8. If the linear system Q has no solution, declare that
the objective information inequality F̄ ≥ 0

is ‘Not Provable’ and terminate the procedure.
Step 9. Otherwise, solve the linear equations {qj = 0, j ∈

Nn1
} by Gauss-Jordan elmination to obtain
the solution set of pi in the form {pi = Pi, i ∈ Nt2},

where Pi is a linear function in t2 − d2 variables
of P and d2 is the rank of the linear system Q.

Step 10. If Pi ∈ R<0 (the set of negative real numbers) for
some i ∈ Nt2 , declare ‘Not Provable’.

Step 11. Otherwise, let SP be the set {Pi, i ∈ Nt2}, and let
S̄P = SP \R. Write S̄P = {P̄i, i ∈ Nt3}.

If S̄P is empty, the objective information inequality F̄ is
proved. Otherwise go to Step 12.

Step 12. Problem P3:

min(0)
s.t. P̄i ≥ 0, i = 1, . . . , t3.

If the above LP has a solution, the objective information
inequality F̄ ≥ 0 is proved.

Otherwise, declare ‘Not Provable’.

B. Procedure II: Proving Information Identities

Input:
Objective information identity: F̄ = 0.
Additional constraints: C̄i = 0, i = 1, . . . , r1; C̄j ≥ 0, j =
r1 + 1, . . . , r2.
Element information inequalities: C̄k ≥ 0, k = r2 +1, . . . , r3.
Here, F̄ , C̄i, C̄j , and C̄k are linear combination of information
measures.
Output: A proof of F̄ = 0 if feasible.

Step 1. Construct the s-variable set Sn and the associated
s-variable sequence Sn.

Step 2. Transform F̄ , C̄i, C̄j .

// We need to solve
// Problem P1: Determine whether F = 0 is implied by

Ci = 0, i = 1, . . . , r1,
Cj ≥ 0, j = r1 + 1, . . . , r2,
Ck ≥ 0, k = r2 + 1, . . . , r3.

Step 3. Apply Algorithm 1 to reduce {Cl, l ∈ Nr3\Nr1} by
{Cl = 0, l ∈ Nr1} to obtain the Jordan normal form of

{Cl, l ∈ Nr1}, denoted by B, and the remainder set,
denoted by C1 = {gi, i ∈ Nr}.

Step 4. Apply Algorithm 4 to obtain the reduced minimal
characterization set of R(C1), denoted by

SM = Ẽ ∪ Sr′ .
Step 5. Let G = R̃−1(Ẽ)∪B and compute the Jordan normal

form of G, denoted by B = {Ci, i ∈ Nt1}.
// The original problem P1 has been transformed into
// Problem P2: Determine whether F = 0 is implied by R̃(B).

Step 6. Reduce F by R̃(B) to obtain remainder F1. If F1 ≡
0, then the objective identity F̄ = 0 is proved.

Otherwise, declare ‘Not Provable’.
// As explained in Procedure I, F1 involves only the free
variables in the Jordan normal form B. Therefore,
// if F1 ̸≡ 0, the free variables can be chosen such that F1 is
evaluated to a nonzero value.

Remark IV.1. In Procedure II, we transform the proof of an
information identity into a Gauss elimination problem, which
greatly reduces the computational complexity compared with
existing methods that need to solve two LPs.

Remark IV.2. Procedures I and II can be implemented on
the computer by Maple for symbolic computation. Therefore,
they can give explicit proofs of information inequalities and
identities.

V. AN ILLUSTRATIVE EXAMPLE

We give an example to illustrate Procedure I. The computa-
tion is performed by Maple.

Example V.1. I(Xi;X4) = 0, i = 1, 2, 3 and
H(X4|Xi, Xj) = 0, 1 ≤ i < j ≤ 3 ⇒ H(Xi) ≥ H(X4).

The inequality above can be proved by applying Procedure I.
The details can be found in [15]. Table I shows the advantage
of Procedure I by comparing it with the Direct LP method
induced by Theorem II.2.

TABLE I

Number of
variables

Number of
equality constraints

Number of
Inequality constraints

Direct LP method 15 6 28
LP in Problem P3 2 0 6

VI. CONCLUSION

We have developed a new method to prove linear information
inequalities and identities. Instead of solving an LP directly, we
transform the problem into a polynomial reduction problem,
significantly improving the computational efficiency.
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